A New Intelligent Motion Planning for Mobile Robot Navigation using Multiple Adaptive Neuro-Fuzzy Inference System
نویسندگان
چکیده
Nowadays intelligent tools such as fuzzy inference system (FIS), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are mainly considered as effective and suitable methods for modeling an engineering system. This paper presents a new hybrid technique based on the combination of fuzzy inference system and artificial neural network for addressing navigational problem of autonomous mobile robot. First we developed an adaptive fuzzy controller with four input parameters, two output parameters and three parameters each. Afterwards each adaptive fuzzy controller acts as a single takagi-sugeno type fuzzy inference system, where inputs are front obstacle distance (FOD), left obstacle distance (LOD), right obstacle distance (ROD) (from robot), heading angle (HA) (angle to target) and output corresponds to the wheel velocities ( Left wheel and right wheel) for the mobile robot. The effectiveness, feasibility and robustness of the proposed navigational controller have been demonstrated by means of simulation experiments. The real time experimental results were verified with simulation experiments, showing that the proposed navigational algorithm consistently performs better results to navigate the mobile robot safely in a completely or partially unknown environment.
منابع مشابه
Multiple Mobile Robots Navigation and Obstacle Avoidance Using Minimum Rule Based ANFIS Network Controller in the Cluttered Environment
The ANFIS is the product of two methods, neural networks, and fuzzy systems. If both these intelligent methods are combined, better reasoning will be obtained in term of quality and quantity. In other words, both fuzzy reasoning and neural network calculation will be available simultaneously [7]. This ANFIS technique has been successfully applied by many researchers for sensor-based autonomous ...
متن کاملMobile Robot Online Motion Planning Using Generalized Voronoi Graphs
In this paper, a new online robot motion planner is developed for systematically exploring unknown environ¬ments by intelligent mobile robots in real-time applications. The algorithm takes advantage of sensory data to find an obstacle-free start-to-goal path. It does so by online calculation of the Generalized Voronoi Graph (GVG) of the free space, and utilizing a combination of depth-first an...
متن کاملNavigation of Multiple Mobile Robots using Rule-based-Neuro-Fuzzy Technique
This paper deals with motion planning of multiple mobile robots. Mobile robots working together to achieve several objectives have many advantages over single robot system. However, the planning and coordination between the mobile robots is extremely difficult. In the present investigation rule-based and rulebased-neuro-fuzzy techniques are analyzed for multiple mobile robots navigation in an u...
متن کاملIntelligent Adaptive Mobile Robot Navigation
This paper deals with the application of a neuro-fuzzy inference system to a mobile robot navigation in an unknown, or partially unknown environment. The final aim of the robot is to reach some pre-defined goal. For this purpose, a sort of a co-operation between three main sub-modules is performed. These sub-modules consist in three elementary robot tasks: following a wall, avoiding an obstacle...
متن کاملA Neuro-Fuzzy Reasoning System for Mobile Robot Navigation
An Autonomous Mobile Robot is an artificially intelligent vehicle capable of traveling in unknown and unstructured environments independently. Among the proposed approaches in the literature to handle the navigation problem of a mobile robot is the simple fuzzy reactive approach. This approach, however, occasionally suffers from two major problems, i.e., escaping from trap situations and the co...
متن کامل